THAI TSUNAMI VICTIM IDENTIFICATION - OVERVIEW TO DATE

James H, Ed

Forensic Odontology Unit, University of Adelaide, Australia

Contributors

Ball J, Centre for Forensic Science, University of Western Australia, Australia Benthaus S, Xanten, Germany

Ciaccio FJ, Regional Vice President, The Americas, Kenyon International Emergency Services, USA

Craig, P, School of Dental Science, University of Melbourne, Australia

Firth N, Department of Oral Diagnostic and Surgical Sciences, University of Otago, New Zealand

Griffith D, Australian Federal Police Consultant, Canberra, Australia

Grundmann C, Duisburg, Germany

Hashimoto M, Dept. of Forensic Anthropology, Tokyo Dental College, Japan

James H, Forensic Odontology Unit, University of Adelaide, Australia

Khouri Z, Forensic Odontologist, Hamilton, New Zealand

Kieser J.A, Department of Oral Sciences, University of Otago, New Zealand

Kvaal S, Dept of Pathology and Forensic Odontology, University of Oslo, Norway

Lain R, Oral Surgery Department, Sydney Dental Hospital, Australia

Laing W, Forensic Odontologist, Family Dental Centre, Morrinsville, New Zealand

Lessig R, Institute of Legal Medicine of the University of Leipzig, Germany

Lorentsen M, Dept of Pathology and Forensic Odontology, University of Oslo, Norway

Meldrum R, Department of Oral Sciences, University of Otago, New Zealand

Peter J, Department of the German Federal Police, Wiesbaden, Germany

Porntrakulseree N, Dental Department, Lumphun Hospital, Muang, Lumphun, Thailand

Rowlings K, Forensic Odontology Unit, University of Adelaide, Australia

Saka H, Dept. of Anatomy, Tokyo Dental College, Japan

Saunderson W, Department of General Dentistry, Sydney Dental Hospital, Australia

Solheim T, Dept of Pathology and Forensic Odontology, University of Oslo, Norway

Stene-Johansen W, Dept of Pathology and Forensic Odontology, University of Oslo, Norway

Suksudaj S, Faculty of Dentistry, Thammasat University, Patumtani, Thailand

Sweet D, Bureau of Legal Dentistry, University of British Columbia, Canada

Taylor J, Oral Health University of Newcastle, Australia

Williams G. Wellington Central Police Station, Wellington, New Zealand

ABSTRACT

The boxing day tsunami of 26 December 2004 caused devastation and loss of life around the Indian ocean. International disaster victim identification efforts were centred in Thailand, with many odontologists from over 20 countries contributing to the examination of deceased, collection of antemortem information, comparison and reconciliation of data. The contribution of forensic odontology to the identification process conducted in Thailand in response to the tsunami devastation is presented in a composite of short reports focused on the five phases associated with disaster victim identification. To date 1,474 deceased have been identified. Dental comparison has been the primary identifier in 79% of cases and a contributor in another 8%, a total of 87%.

(J Forensic Odontostomatol 2005;23:1-18)

Keywords: Forensic Odontology, Disaster Victim Identification, Tsunami

INTRODUCTION

Tsunami is a Japanese word meaning "harbour wave". They can be caused by a variety of phenomena, including undersea volcanic eruption, coastal landslides or earthquakes, resulting in shifts to the tectonic plates and displacement of millions of tonnes of water to produce devastating waves.

At 0800 on 26 December 2004 an earthquake measuring 9 on the Richter Scale occurred, with the epicentre of the earthquake off the west coast of Sumatra, Indonesia. The sea floor was disrupted for 960 km and tsunami waves produced the "Boxing Day Tsunami".

The closest population base, Aceh at the northern tip of Sumatra, was inundated by water approximately 15 minutes later (estimated 130,000 dead). Waves radiated progressively across the Indian ocean, striking Malaysia (68), Thailand (5,400), Myanmar (90), Bangladesh (2), India (11,000), Sri Lanka (38,000), the Maldive (82) & Seychelle (2) Islands, and the East African coast of Tanzania (10), Kenya (1) and Somalia (300).²

Six coastal provinces in the south of Thailand were hit and consequently posed considerable social and economic impacts on the country. Many local people and tourists who came to appreciate the beautiful Thailand Andaman coast, were injured or lost their lives. Official reports³ stated there were 8,457 injured, of which 72% were Thais and 28% were foreigners and 5,395 dead of which 37% were Thais, 42% foreigners and 21% unidentified. This incredibly high human cost was far beyond the expectation and experience of the nation, where a massive scale disaster had never happened before and a systematic management plan had never been set up.

According to Thai law, the Royal Thai Police Force is in charge of victim identification. Since there are few forensic pathologists and only one forensic dentist in the organization, the task of identifying thousands of tsunami victims was considered beyond the capability of the Royal Thai Police Force alone. On 27 December the Thai government issued an urgent request for assistance in view of the scale of the disaster and the number of foreign tourists affected. World-wide humanitarian relief, as well as Disaster Victim Identification plans, was activated in many countries affected by the tragedy.

The Ministry of Public Health contacted the Thai Dental Council to recruit Thai dentists throughout the

country to help in the body identifications. As a result, more than 500 Thai volunteer dentists and dental personnel from both public and private sectors have participated in the tsunami dental forensic investigation, a well as an estimated 200 international dentists.

The traditional five phases structuring a DVI incident were put into place as a joint venture between Thai and Australian DVI experts – scene assessment, postmortem examination, antemortem record collection, reconcilliation to identify victims and debriefing.⁴

PHASE 1: THE SCENE Damage

The damage to Phuket Island was variable and not evenly distributed. Patong Beach was largely destroyed, while several of the resort hotels along the coastline were back in full operation after 24 hours of frantic clean up. Phi Phi Island was totally devastated with large loss of life, but the most affected area was along the Khao Lak coast north of Phuket Island right up to the Burmese border, a distance of some 150 km. Along this coastline there were pockets of normality mixed with total devastation. There is only a small coastal plain, in some areas only 300 metres wide, backed by sharply rising hills. The tsunami rapidly inundated the coastal plain and finding its path blocked by immovable hills, turned back on itself, creating the classic maelstrom effect and massively increasing the damage. The coastal road was impassable in many places, being buried under two metres of sand and debris, with the powerlines that ran alongside the road also cut. Cars were picked up and carried great distances and some could be seen buried deep inside the first floor structure of the few remaining buildings. Several boats, of significant tonnage, were deposited half way up the hillsides, some almost 750 metres from the sea.

The vegetation rapidly died due to the massive increase in salinity and while a significant number of palm trees had demonstrated their ability to survive by flexing the way of the forces applied to them, most were bent at odd angles. The property damage along this stretch of coastline was extreme with entire hotels reduced to two courses of brickwork (Fig.1).

The loss of life was assessed as severe and while most deaths were expected to be by drowning, it was obvious from the property damage that injuries and

probably death from physical trauma would also be found.

A priority was identified as the opening of the coastal roads and re-establishment of power supplies with the setting up of refugee camps in the affected areas as soon as practicable.

A secondary, but no less significant, need was to collect the deceased and bring them to central holding areas before disease and contagion spread. This was an area in which the Thai authorities sought international help. Strong representations were made to the Thai authorities to establish a single body collection and mortuary site at or near the airport, and to this end QANTAS, the Australian national airline, was approached for the use of one of their hangars at Phuket International Airport. However, initially, the Thai authorities were unable to countenance such a massive movement of bodies, in a manner which may have proved offensive to the Buddhist faith, and the idea of a central facility was rejected by them.

The Thai authorities decided to utilise the various Buddhist temples or *Wats*, which abound in Thailand. These places have the advantage of being easily freed from their normal usage, and often have their own crematorium attached. In all societies, temples, churches and mosques are a source of comfort and solace in such situations. They are also used as information centres and as collection points for the dead. This was the case in Thailand, a predominantly Buddhist society and the attitude of the Buddhist monks should be highly praised.

Mortuary Sites

Mortuary sites were subsequently established at Takua Pa (Sites 1A & 1B), Mai Khao (Site 2), and Krabi (Site 3).

Site 1A was established at the temple complex of Wat Yan Yao and 1B at Wat Ban Muang.

Under the leadership of Thai pathologist Dr Pornthip Rotjanasunan, teams scoured the affected area for bodies and brought them to central holding areas. Given the large area involved and difficulty of transport along a still badly affected single road a decision was taken to establish local holding areas and in the earliest times many small body holding areas existed.

Initially there were over 500 bodies, mostly uncovered, lying in the sun or under primitive openair shade at Wat Yang Yao (Fig.2). There was

advanced bloating and decomposition evident with all the bodies. An additional 1500 bodies were delivered overnight, with a further 1500 bodies the next day. A precise count of the number of bodies was not possible until they had all been tagged and refrigerated and this took almost 2 weeks to complete, with more bodies arriving in varying numbers daily. Wat Yang Yao rapidly became the prime site in Phanh Nga province.

Priorities

Given the large number of bodies lying in the open with little or no protection from the elements and a daytime temperature above 30C with high humidity, several critical decisions had to be taken immediately upon arrival at Wat Yang Yao.

The major concern was identified as that of disease and this was recognised as being far more important than commencing identifications, especially as it was already very clear that the identification process

Fig 1: Destruction on the coast road to Takua Pa

Fig 2: Bodies at Wat Yan Yao

Fig 3: Bodies waiting for container storage, Wat Yan Yao

would take many months. The priorities for containing disease were identified as:

- 1. Implement some sort of body cooling process *in situ* by the use of dry ice or other agent
- 2. Obtain refrigerated containers as soon as practicable
- 3. Commence achieving some semblance of order at the site by tagging, recording and bagging bodies prior to refrigeration.
- 4. Clear parts of the site to allow easy access to the bodies
- Commence a clean up of the site as soon as spaces were cleared to remove the already significant contamination caused by discarded gloves, masks and other debris
- 6. Identify a suitable site for the temporary mortuary
- 7. Commence construction of the temporary mortuary

The entire team set to work tagging, recording and bagging bodies, aided by many volunteers, while the site commander set about organizing refrigeration, power and identifying a suitable mortuary site. Truckloads of dry ice arrived at the site, followed by refrigerated containers which were immediately placed by the Thai army and connected to power supplies (Fig.3).

Personnel

The initial dental DVI team consisted of two forensic odontologists from Australia. They were joined 48 hours later by a dentist from New Zealand, followed rapidly by the Dutch, Belgian, Singaporean and Swedish teams. French and German teams also arrived on site shortly after and the entire operation grew in 6 days from a solo Australian response to a truly international effort.

Early problems and solutions

The Australian Rapid Response kit consists of a cache of pre-packed, containerised and air portable

equipment and is designed to allow the team to operate in the field for 7 days before resupply. This allows for full field operations of a forensic and/or DVI nature for a week. The time frame was deliberately chosen, as this is the time it will take to assemble and deploy the larger teams needed and to arrange effective resupply. The DVI component of the kit includes portable dental X-ray machines, X-ray developing machines, and all the necessary dental mortuary equipment including personal protective equipment. It was never designed to supply the needs of dentists from 10 countries for 7 days, but sadly, with the exception of the superbly organised and equipped Dutch team, many National teams turned up woefully under-equipped for an operation of this nature and scale.

The Australian Department of Foreign Affairs and Trade signed a contract with Kenyon International to supply and maintain a mobile mortuary facility at Wat Yang Yao and thus took on the responsibility and cost of all international mortuary operations there. The Australian Rapid Response kit allowed immediate and effective aid to be given to the Thai authorities and greatly enhanced the speed at which the Australian team was able to deploy and subsequently reach full function. Re-supply was left to Kenyon International.

The mobile mortuary kit provided by Kenyon was impressive in size and scope, but customs and transport difficulties meant that its promised 24 hour deployment time was not achieved and when the kit finally arrived it was lacking in some critical areas. The provision of all electrical equipment to operate on 110V power supply meant transformers were required. The need to carefully check the voltage range of every piece of equipment was a severe limiting factor. The failure of the provided X-ray machine to function and the poorly designed stand meant that additional radiographic machines had to be sourced urgently from Australia. The initial provision of only two mortuary tables was a problem, given that the size of the disaster was well known before the kit was deployed. Praise must be given to the efforts of the Kenyon staff on the ground who worked tirelessly to establish infection control and decontamination areas.

Body handling provided its own special difficulties with different nations having varying standards, although the accepted standard for the operation was the Interpol DVI standard. The accepted protocol of having a unique number for each body was adopted and extreme care was taken to ensure that this number was not re-used. The unexpected

commencement of postmortems at other sites caused immense concerns and the unique number was rapidly modified to contain information about the site the postmortem was completed at and the country responsible for tagging the body initially.

Once a body was tagged with a durable tag marked with indelible ink attached with electrical ties to the left wrist, it was placed in a body bag which was then sealed and another tag marked with the body number placed on the zipper tag with an electrical tie. The body number was then recorded on the body bag with an indelible pen, and the head of the body indicated. The body bag was then transferred under escort to a pre-determined container and the container number noted on the post mortem form. It was stressed to all who performed this vital task that once the body had been assigned a number it was legally in their care and it was their responsibility to ensure correct storage.

While this protocol was adhered to, body tracking was simple. However there was sometimes a desire to sacrifice accuracy for speed and as a result some bodies were temporarily mislaid. This should never happen and would never have happened had all participants adhered to the guidelines.

An unforeseen and initially insoluble problem surfaced early on with the local Buddhists asking for and receiving permission to start decontaminating the site. This they did with a delightful orange scented spray which has special significance to Buddhists; however it also has a special affinity to indelible ink on body bags that rendered many of the numbers on the exterior of the bag unreadable. The wisdom of tags inside the bag on the body, as well as tags outside the bag, became abundantly clear.

Later decontamination was accomplished with more conventional chemicals; however the use of large amounts of hypochlorite bleach and formaldehyde did raise significant occupational health and safety issues and this was brought to the attention of the Thai authorities.

PHASE 2: POSTMORTEM

Design requirements for an emergency mortuary

The design of a mortuary from scratch using only locally available materials and able to serve the needs of many disciplines while handling a large number of bodies, was a complex task and was made no easier by mounting political pressure to commence postmortem operations.

A list of requirements was established in order of importance:-

- Adequate protection and decontamination for all staff
- 2. Optimum working conditions to allow maximum efficiency
- Management of liquid waste was critical to avoid contamination of local water supplies and the nearby river
- The mortuary had to be secure and easily protected from unwanted intrusions by journalists or members of the public
- 5. Areas had to be designated for specific procedures
- 6. An unrestricted flow of bodies had to be achieved
- 7. The flow and number of work stations had to reflect the time taken at each stage
- 8. Body handling had to be well coordinated with mortuary activities given the distance the bodies had to be moved from storage

With these requirements in mind it was determined that the best site was in the lower temple building. While the upper temple building was better situated, it was full of bodies still to be processed, and it was accepted that the time taken to remove these bodies would cause an unacceptable delay to the commencement of postmortem operations.

The flow of bodies was designed to accommodate the various disciplines, with each discipline determining their specific requirements. Fingerprinting was identified as the first stage and this was established in an air conditioned tent at the entrance to the fixed mortuary. The bodies were then moved on the same table into the mortuary. Pathologists opted for a visual examination for surface features and a laparotomy to determine if any organs had been surgically removed antemortem. The next stage established was to harvest a sample of femur or rib for subsequent DNA analysis. A decision was taken to deglove the face and resect the mandible in a manner which would allow later replacement with minimal evidence of interference.

The dental station was next where a full dental postmortem was performed with specified photographs.

The body then left the air conditioned area and went to dental radiography. Once the radiographs were checked and approved, two teeth were extracted for DNA analysis and the body returned to the care of the body handlers for placement in its designated

Fig 4: Mortuary in operation, Site 1A

container. It was identified that the dental radiography process was the time limiting factor and a large area was therefore allowed for body holding.

The mortuary was constructed of plywood on a pine stud frame, within the temple building. The floor was concrete and many options were canvassed before deciding that a floor covering would prove counter productive, but provision was made for specialised non-slip mats if they proved necessary. The walls were lined with plastic to stop contamination and improve ease of cleaning. A large number of fluorescent lights were installed to give optimal lighting, and three large air-conditioning units were installed to give a reasonable working temperature.

Fig 5: Thai volunteers

Supply of running water and fully plumbed sinks was easily achieved, although the need to rely on the local water tower for supplies meant that arrangements had to be made with the local fire brigade to supplement the actions of the meagre pump. Of far greater concern was drainage for the sinks and for the mortuary floor. This necessitated a penetration of the concrete slab, which had been specifically requested to be left intact by the Buddhist monks. As always the monks rose to the occasion and granted immediate permission for further desecration of their temple in the interests of the living. Having established the drainage capacity the problem of what to do with the waste was then paramount. An original idea to build a large soak away pit was rejected on the grounds of potential contamination of the ground water and an ingenious cascade system of septic tanks was designed and installed. This resulted in no contamination whatsoever of the ground water and nearby river.

Construction of the mortuary took 36 hours and resulted in a fully plumbed, air-conditioned, lined and well lit facility (Fig.4). The design and construction phase was challenging, not least of all because we were to be working in a Buddhist prayer house and the image of the Buddha was to remain and had to be respected.

Personnel

On day one at Wat Yang Yao over 50 Thai dentists arrived ready and willing to work. In keeping with the directive that the Australian team was to aid and not control the Thai effort Dr Russell Lain was tasked with conducting a rapid training course in basic dental postmortem procedures. This proved to be exceptionally successful and the Thai dental teams commenced their post-mortem examinations on day two, in sub optimal conditions, but with access to functional x-ray machines on site. When full mortuary operations commenced on day four, dentists from around the world had arrived to join the identification efforts.

Non-dental volunteers from Canada, USA, UK, Australia, Scandinavia and Thailand also arrived to help in the early days and without them the operation would have been seriously hampered. The role played by the Thai army cannot be overstated as squads of soldiers toiled tirelessly moving bodies and positioning containers. Most of the electricians on site were Thai volunteers as were the plumbing crews and these people were the unsung heroes of our early successes.(Fig.5)

Development of the Standard Operating Procedures (SOP)

Standard operating procedures for dental postmortem examination were written on day three by consultation between Australian and Dutch teams. The SOP established two-person teams to cover each phase of the dental postmortem with one pair being responsible for the postmortem examination. another pair responsible for the radiographic examination and harvesting teeth for DNA analysis. Each mortuary line was accorded its own dedicated dental team. It was decided that accuracy was paramount and that if necessary, speed should be sacrificed for accuracy. To this end a slightly topheavy team structure was organised with a heavy emphasis on quality assurance. The need to ensure accuracy led to a requirement for regular breaks to be taken and the teams to be regularly rotated. The creation of a 'super dentist' to oversee each line proved to be an essential tool in the days to come when different nations started arriving to help. Incorporated within the identified dental duties, merely because of the position of the final dental procedures in the mortuary line, was enforcement of infection control and mortuary security.

Awareness of the cost of the operation and the inevitable political backlash when these costs became clear, led to a decision to avoid full mouth radiographic examinations and settle for bitewing radiographs and radiographs of any other feature identified as interesting by the charting team. Photographs were required of the anterior dentition, left and right molars and the occlusal surfaces of teeth. Polaroids had the advantage of being instantly ready and assessable, did not require a computer and were nowhere near as easy to lose as flash cards from digital cameras. It was decided that posterior teeth without restorations would be extracted for DNA profiling. This was later changed, against our advice, to anterior teeth.

The dental team was formed into the required groups to carry out the SOP effectively and it was decided at once that unless the dental group could be unified outside strict Nationalistic boundaries that it's effectiveness would be diminished. This led to the adoption of pre and post work team meetings where issues were aired, new members welcomed and a co-operative team framework built.

In mid-March New Zealand police carried out an audit to establish how many deceased persons remained to be examined at Site 1. The Thai government set a date for closure of the site and therefore all teams were aware of the workload for the days prior to

closure. Efficiency lifted in all aspects over these days. The critical factors were timing of body transportation so that teams could commence work early. In the dental examination area, the Dutch team arrived earlier than the Australian and New Zealand teams, dissecting mandibles so that examination of the deceased persons could commence as soon as the Australian and New Zealand teams arrived. A sense of satisfaction was felt by all when all examinations were completed a day ahead of the scheduled closure.

Problems encountered

Some of the problems encountered were old favourites of the forensic dental world, such as the ability to detect tooth coloured restorations in difficult light conditions.

One area of potential problem was identified early when Thai authorities required a separation to be made of Thai and western bodies. It was suggested to them that such separation would at best be prone to error and this later proved to be the case.

Relieving teams took over from teams who were extremely tired. As a consequence there was limited time for briefing before the handover. While standard operating procedures (SOP) were available in written form, taped to walls of the temporary mortuary and to the desk in the Quality Assurance section at Site 1, smooth transition was hampered by lack of time.

Maintenance of the dental SOP at Site 1 was never a significant problem with rigorous enforcement being carried out by the 'super dentists', the team leader and his deputy. The same SOP, however, was not applied at the other sites with the same vigour and this resulted in variable post mortem results and standards.

With the generation of large numbers of radiographs (up to 200 per day) there were problems with film processing and film mix-ups. Assigning a single individual to accept, log, and process all radiographs resolved this issue. Ideally, this individual should adopt a quality assurance role that includes machine and chemical maintenance.

The need for one single dental DVI commander was rapidly identified, but never achieved except for a brief period at Site 1.

Site 2

On 31 December a provisional mortuary near the international airport in the area of Wat Tha Chat Chai was established. German and Austrian DVI teams

examined victims who had been stored at the hospital in Phuket Town. The conditions at this location were problematic as there were no hand-washing facilities. Furthermore, the work had to be stopped after sunset because no electricity was available to operate spotlights. Three days later the DVI teams moved to Site 1B, and then to 1A.

Site 2 was later selected as the site for the new central autopsy facility near the airport. Norway was approached to provide financing for the centre and the Norwegian company Normeca was contracted to provide the construction. Normeca construct and build temporary hospitals in areas of crisis. They have gained experience and built their reputation from Bosnia, Kosovo, Afghanistan and a number of other countries. The Norwegian government is covering all expenses of running the Site, including responsibility for supplies, security and cleaning.

The normal temporary hospital design consists of units of about 3 metres, which can be easily connected to form a long building. This concept was

Fig 6: Temporary mortuary consisting of three buildings

Fig 7: Interior view of one of the tunnels. Connecting units can be seen and the total length of the room was about 40 metres

redesigned as a mortuary. Three such buildings (Fig. 6), with capacity for two examination lines per "tunnel" (Fig. 7), were set up in late January.

Advantages compared with the early sites include sufficient space in the tunnels to reduce bottle-necks. Since, again, no dedicated radiography area was incorporated into the design, the length of the tunnel at least allowed improved radiation hygiene. The rooms were fully air-conditioned, an important factor in improving working conditions, with sinks, running water and electricity available for lighting and computer terminals. The location had the advantage of proximity to the airport and accommodation, removing the long travel times that featured prominently at Site 1.

Currently, personnel at Site 2 are undertaking an inventory of bodies remaining at the site. The purpose of the Final Inventory Procedure (FIP) is to check that the available postmortem information is accurate, that the dental charting is correct and that good quality photographs and radiographs exist prior to bodies being sealed. Odontologists at the Thai Tsunami Victim Identification Information Management Centre assess existing postmortem records and issue target requests for any deficiencies. For example, extra radiographs may be requested of root filled teeth or for age estimation. Once the FIP is complete work at the site is expected to cease, except for the repatriation of bodies.

Site 3

At Krabi (Site 3), one of the major disaster sites in Thailand, operations by a combined International Disaster Victim Identification Team started on 5 January 2005. This team consisted of representatives from six countries: Israel, Switzerland, Canada, Italy, Portugal and Japan. The members of the team included dentists, forensic pathologists and anthropologists, DNA experts and police personnel. (Fig.8) Only two dentists from Thailand were at Site 3 since most of Thai dentists were involved at Site 1 at Takua Pa.

Each body was examined using the following protocols:

- Two dental radiographs (bitewings) of right and left molar regions were taken on each body brought from the freezer container, and developed.
- The body was then brought to a team. Dental examination (the status of each tooth) including anatomical features were done and the DVI dental form completed. Not all countries sent dentists to the site, therefore one dentist worked for a number of country teams.

Fig 8: Body examination at Krabi

Physical characteristics such as tattoos, evidence of surgery and so on were recorded. If possible, finger prints were also taken by the police. Clothes were washed and photographed. Personal belongings were also photographed. Lastly, two intact teeth were extracted for further examination of DNA.

After each day's operation a meeting was held at the hotel, where the number of bodies examined and the schedule for the following day were discussed. The total number of the bodies examined until 13 January 2005 was about 350. Bodies from Site 3 were eventually moved to the new Site 2 facilities.

Occupational Health, Safety and Welfare

Occupational health, safety and welfare issues associated with disaster management can be divided into three stages: pre-deployment, whilst on rotation and post-deployment.

For example: the pre-deployment information advice for the Australian contingent included advice on health, hygiene and acclimatization as well as cultural and religious information. Awareness of the occurrence of additional earthquakes/after shocks was noted.

Given that information about local conditions was initially uncertain, mandatory vaccinations for Hepatitis A & B, diphtheria, tetanus, meningitis, typhoid and polio were arranged. Anti-malarial treatment, in the form of oral doxycycline, was also prescribed. Impregnation of work clothing by immersion in permethrin was deemed appropriate for protection against mosquito borne dengue fever and malaria.

Initial concerns at Site 1 included infection control measures. Protective clothing, rubber boots and gloves were commonly used; protective eye wear and masks were less common due to the extreme heat. Attempts to demarcate clean from dirty areas, by use of bleach boot wash, change areas, etc was not always successful. (Fig.9)

Awareness of injury, from fragmented bones and the use of "sharps" – scalpel blades and dental probes, was emphasized. The experience of those involved resulted in few incidents amongst dental staff.

Radiation hygiene was of concern to a number of teams. It was, however, agreed that radiographs were essential to complete examinations and for the reconcilliation process. Proximity and direction from the cathode tube was emphasized, given the lack of a dedicated lead-lined area. (Fig.10)

Given that many odontologists arrived from a Northern Hemisphere winter, heat stroke and dehydration were potential problems in the hot, humid environment. Bottled water for drinking had to be taken to the sites on a daily basis.

Fig 9: Disinfection measures

Fig 10: Radiation Hygiene

The devastation of the local infrastructure meant that travelling times of 2-3 hours each way from accommodation added to fatigue when combined with work shifts of six hours. Initially, work-free days were haphazardly arranged, but this was soon recognized as counter-productive to a steady workrate.

An unexpected problem was the frequency of visitors, including political dignitaries, media personnel and high-profile sightseers. On the other hand, local and expatriate volunteers who moved bodies, developed radiographs and provided food rendered considerable assistance.

By the time the new Site 2 mortuary was created, most of these hazards had been recognized and appropriate safety measures documented to brief incoming staff. Two new problems were quickly identified – sharps left in body bags from previous examinations and hazardous fumes emitted when re-examining bodies preserved with formalin.

Trauma counsellors and chaplains were available during deployment and many teams underwent compulsory psychological debriefing at the end of their rotations.

PHASE 3: ANTEMORTEM

The antemortem and reconciliation phases of the process were co-ordinated at the Thai Tsumani Victim Identification Information Management Centre (TTVI-IMC). The building was lent to the process by the Telecommunications Organization of Thailand, (Fig.11) and with some quick additional wiring, was suitable for the computer-linked phases of the

operation. Those working in the building include police investigation teams, Interpol representatives, forensic odontologists, fingerprint and DNA experts, country liason officers and representatives of Kenyon International. (Fig.12)

In any disaster, dental identification relies on the matching of postmortem records with their respective antemortem counterparts. Postmortem record creation will usually be reasonably straightforward, although possibly unpleasant, to achieve as the body (or parts thereof) is at the disaster site. Antemortem records present a far greater challenge to obtain, collate and standardise for incorporation into the DVI process. This can be very difficult in the "closed"type of disaster, where a definitive victim list exists, such as with an aircraft crash. However, the difficulties are greatly magnified in the "open"-type of disaster, where no such list exists.5 The DVR (Disaster Victim Register) process is required here, which attempts to create a victim manifest by requesting information from all interested parties to an incident. The resulting information is subject to inaccuracy, duplication and frank omission with regard to possible victim presence. Nevertheless, this is the information from which the antemortem record collection process must begin. This process is complicated enough when occurring in a single country, whereas an international incident introduces an exponential elevation to the situation. Such was the case in Thailand.

Antemortem record collection was the responsibility of the respective countries police agencies, coordinated by Interpol. For example: The Bureau of Legal Dentistry (BOLD) took an odontology leadership role in the identification of 17 Canadian

Fig 11: Thailand Tsumani Victim Identification Information Management Centre

Fig 12: TTVI-IMC personnel

citizens missing from several southern Thailand beach resorts following the tsunami. The dental records for all missing Canadians were received into custody at the laboratory. This was accomplished primarily by BOLD's interaction with provincial dental associations and by the Royal Canadian Mounted Police (RCMP) Task Force through contacts with the missing persons' families. High-resolution digital images of all dental records were produced as insurance against loss when the records were transported to the response area.

The digital dental records produced at BOLD became extremely important when difficulties were experienced in getting the original records to the TTVI-IMC. Part of the lab's website was encrypted, and secure usernames and passwords were supplied to Canadian odontologists. Thus, the electronic versions of the dental records and subsequently digital fingerprint records and photographic evidence could be supplied very quickly using the Internet. This was a significant development that expedited the entry of data in Phuket.

Unfortunately, record collection in many other countries was not as efficient. Often, dental information was scanty. Antemortem F1 and F2 forms were completed, not by experienced forensic odontologists, but by general dentists or, occasionally, by police officers. Forms completed in a language other than English had to be sent for translation. Information was difficult to verify without original dental records. In several instances, radiographs had been scanned in the reverse orientation.

Thai records were received from public clinics and private practitioners. However, a propensity to record only treatment received, together with few dental radiographs, meant that they were not a good source of identifying material.

When either antemortem or postmortem records were received at the TTVI-IMC, they followed the pathways shown in Fig.13. Prior to any dental data input, the antemortem information was analysed and standardised for inclusion into the program. This was done by two forensic dentists, as mistakes are easily made (with unacceptable results to the DVI process) by a solo operator.

The file management system selected by DVI commanders for use was Plass Data™ DVI System International, a Danish software program based on the Interpol DVI forms. It is the standard DVI computer operating system of many of the European and Scandinavian countries and, since use in

Thailand, had generated considerable interest in a number of other countries.

The sheer scale of the tsunami disaster meant that an electronic system was needed in order to process the large number of antemortem and postmortem data sets. Plass DataTM offered a system that was Windows*-based and staff were able to operate it with a minimum of training.

The system allows retention and electronic transfer of all antemortem and postmortem data including general information, photograph files, dental charting, x-rays and notes, electronic fingerprint records and DNA information. Data can be remotely sent to an information management centre from the country where the missing person lives. The system runs automatic matching routines for dental and DNA information and can be used by forensic dentist, DNA experts and law enforcement officers to generate searches for probable matches.

A problem that became apparent at the TTVI-IMC was the forwarding of "processed" data for direct inclusion into the computer program, with original antemortem data being retained by host countries. This was deemed unacceptable, regardless of assurances from representatives from those countries as to the excellence of their forensic record compilers, as errors were noted in the very first such records brought up for comparison.

Another common noting was incomplete antemortem records, with chart information alluding to radiographs which were not supplied. Such happenings were referred to Interpol, for liaison with the respective police agencies and hopeful collection of the requested data.

So far, approximately 2200 antemortem records are on file at the TTVI-IMC, with over 4200 postmortem records also present. However, as the total mooted victim list is around 5300, the likelihood exists that many of the antemortem records may refer to victims whose remains have not been recovered. Nevertheless, as the overwhelming majority of the identifications have been achieved through dental means, the indisputable importance of antemortem dental records is obvious. This reinforces the onus on all dentists to ensure that their patient records are as complete as possible and retained for the maximum possible time.

^{*} Microsoft Corporation, Redmond, WA, USA

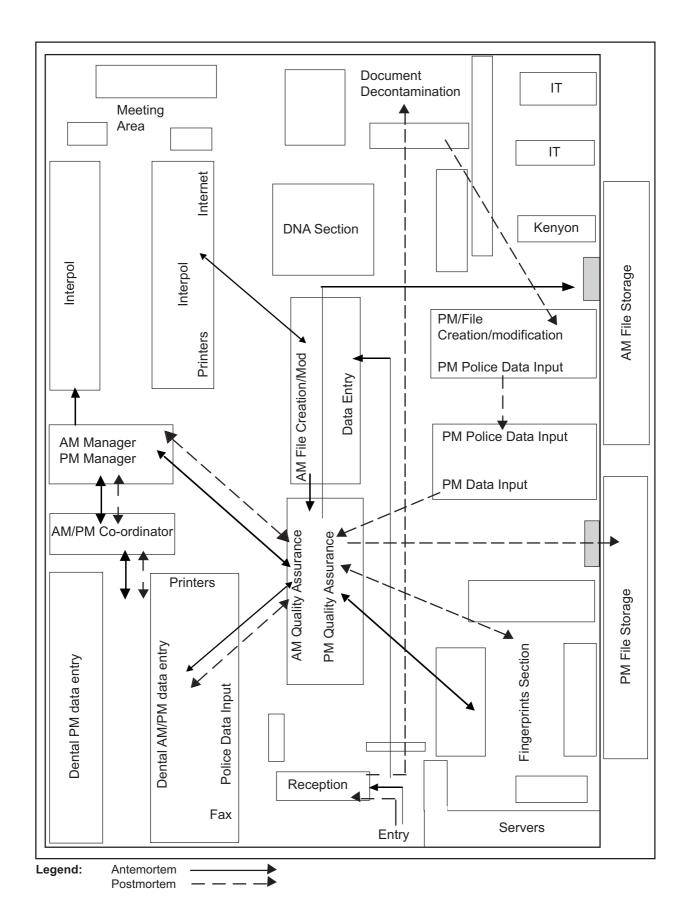


Fig.13: Thai Tsunami Victim Identification - Information Management Centre: Layout and File Movement

Kenyon Deployment

Within 48 hours of the tsunami, Kenyon International Emergency Services, a worldwide premier disaster management company, responded to the incident and established a coordination center in Bangkok, Thailand. The initial response group consisted of 11 disaster management experts, a forensic odontologist and a mortuary-operations specialist deployed from Kenyon offices in Singapore, London, Houston and Sydney.

As political issues mounted in Thailand, the Thai government was pressured to identify the human remains and return them to their families as quickly as possible. Although the Thai government declined any international financial assistance for the disaster, the Thai Prime Minister was quick to accept help with the identification effort. With the generous offer by the Australian government to partially fund the identification process and international effort, the Thai government brought in Kenyon International Emergency Services.

Kenyon initiated deployment of many of its forensic team members from around the world. The task at hand was to provide logistical support to the three remote mortuary sites, establish and staff the repatriation center and offer technical, administrative, and logistical support to the Thai Tsunami Victim Identification Information Management Centre.

Kenyon maintains a significant number of dental equipment kits in its mobile mortuary; however the number of dental radiograph machines, light view boxes and computer equipment was not sufficient to handle the massive case-load. It was recognized immediately that Kenyon needed to locate and outsource additional dental equipment that could be used to allow the forensic odontologists to effectively do their work. Catering to the personal preferences in protective clothing for a wide spectrum of dentists also provided a challenge.

Managing a disaster of this magnitude depends upon the ability to process antemortem and postmortem information to determine positive identifications. Kenyon provided the resources, technology and Plass Data™ software application to handle such extensive information. Forensic dentists were trained on Plass Data™, a sophisticated computer application that mirrors the Interpol DVI forms. Having the ability to provide and maintain a computer software application like Plass Data™ reduces the time spent on hand-collating information and reconciling the information for positive identification.

Information management is crucial and vital to the outcome of a disaster. Having protocols, procedures, and processes in place is paramount to obtaining positive identifications. Maintaining a cache of computers and supplies, along with the ability to acquire additional equipment helps expedite the identification process. Locating functional computer equipment was another challenge, especially while working in a facility that did not have the appropriate infrastructure in place. Having information technology staff on site enabled the infrastructure to be installed and the appropriate equipment put in place.

With over 75 years in business, Kenyon has knowledge, expertise and experience in managing various disasters on an international level. The ability for a private company to work harmoniously with the public sector is a credit to both in achieving the common goal. The commitment to obtaining positive identifications was the highest priority for everyone working in the Thai Tsunami Victim Identification Information Management Centre.

PHASE 4: RECONCILIATION

The task of Reconciliation is to find consistencies between specific antemortem and postmortem records and investigate these consistencies further with the ultimate aim of confirming the identities of the deceased based on the comparison of antemortem records with postmortem records.

In the early days, fortuitous examinations wielded some positive identifications. In one case, antemortem information, including a dental record, for a missing 10 year old boy was collated and transferred to Thailand. Examination of a young victim at Site IB matched concerning the age, height and clothing (swimming trunks). The postmortem dental examination showed a typical mixed dentition, with deciduous and permanent teeth. Age was estimated at 10 years +/- 3 months. Tooth 35 was congenitally missing (Fig.14). The antemortem record also indicated that tooth 35 was congenitally missing. Identification, based on dental and physical evidence, was accepted and allowed early repatriation of this child.

Reconciliation procedures were soon located at the TTVI-IMC and using the Plass Data™ program to generate potential matches. The reconciliation work area was separated from the antemortem/ postmortem data entry areas in order to prevent potential loss or contamination of files and to maintain a more transparent chain of evidence so that the

Fig.14: Status of the lower jaw and the radiograph of the 35 region

antemortem and postmortem files could be easily located and updated if required.

From a reconciliation perspective, the Plass Data™ program has a most important search function which runs during the night. This searching of potential links between certain antemortem and postmortem records allows for the process of data mining to occur. Data mining involved further investigation of the links between particular antemortem and postmortem records already made by the Plass Data™ program to assess whether these particular records warrant a thorough examination by a member of the Forensic Odontology reconciliation team. The method of data mining has evolved with time. Originally the data mining was done by non-dental personnel but this was discontinued in favour of using the Forensic Odontology reconciliation team. This had the advantage of being able to spread the workload to help improve productivity and, with the initial searching being done by the Odontologists, those records requiring more thorough examination could be more efficiently targeted. In recent weeks this search capacity had been discontinued due to the potential for unbiased data mining and the fact that many found the search facility a little clumsy. A new add-on search too is currently being trialed which allows searching for particular aspects of dental treatment such as root canal fillings in specific teeth.

Once a search had been made in the system and when there was a valid reason for thoroughly investigating a comparison between a particular antemortem and postmortem file, the hard copies of these files were requested. The comparison was made based on the antemortem and postmortem evidence made available, such as dental charts, dental records, photographs, radiographs and

perhaps study models. This is where real difficulties in the comparison often surfaced. With regard to the postmortem dental evidence, the problems most often encountered were due to radiograph quality. There were cases in which an insufficient number of radiographs were taken, or were of diminished use due to problems with orientation and film quality. However it was more common for problems to occur with the antemortem evidence and this appears to be a recurring theme in disasters.⁶

The types of problems encountered with antemortem dental evidence were numerous but included inadequate or poor quality record keeping and a lack of good quality radiographs as well as the problem of unmarked dentures. These problems which have been identified were compounded by the fact that the radiographs were often scanned into the Plass Data[™] program which further decreased the quality. Often there were no hard copies of the antemortem radiographs and dental charts available due to diplomatic difficulties in obtaining records from certain countries. This highlighted another difficulty, which not only affected reconciliation but also the entry of antemortem and postmortem dental data, being that of deciphering the different dental nomenclature, charting methods and language used in dental records from different countries. The difficulties associated with this were averted by having an important multi-national presence in both the reconciliation area as well as in the antemortem/ postmortem data entry area. Deciphering dental records from Germany is made just a little easier with a German forensic odontologist sitting alongside you.

Initially, Plass Data[™] could only show one scanned or digital image at a time. This meant that there could not be an antemortem radiograph or photograph displayed at the same time as postmortem radiograph or photograph. This problem has been resolved.

For Reconciliation to work effectively, quality controls needed to be in place and the Dutch command has provided strong leadership and support in this regard. When a conclusion had been reached about a particular antemortem and postmortem file comparison it was assessed and checked by one of the Dutch odontologists. When making a conclusion regarding a particular antemortem and postmortem file comparison, there were five potential outcomes of this process. They were Established, Probable, Possible, Insufficient Evidence and Excluded. An example of a comparison where the identity could be established would be where there are many points of concordance between antemortem and

postmortem radiographs and dental records with any points of discrepancy being easily explainable. When the points of concordance were less due to inadequate antemortem information or a lack of antemortem radiographs, it was unlikely for the identity to be able to be established and perhaps only a probable or possible identity could be reached. In these cases additional methods of identification such as fingerprints, DNA or physical evidence would be required to help establish the identity.

Once enough evidence had been gathered to establish the identity of one of the deceased, the case report was prepared outlining the methods of identification used and the reasons for the conclusions being made. The case could then be presented before the Reconciliation Board of the Thai Tsunami Victim Identification Commission. If identification was accepted by the Board then the repatriation process could begin.

One of the tragedies within this disaster has been the number of children who lost their lives. Unfortunately from a forensic odontology perspective it is difficult to identify children due to the lack of dental treatment performed in young children with little antemortem dental information and few radiographs available. The use of age estimation techniques based on dental development has been helpful and may certainly be of use in at least making an identification possible. Having said this, these techniques need to be used cautiously as they can be only give a possible range of age for an individual and therefore are only an estimation.

The scope and complexity of the operation at hand in Thailand, with regard to the identification and eventual repatriation of the deceased, was evident after working in the Reconciliation wing of the TTVI-IMC. It evoked a greater appreciation of not only the importance of good quality dental evidence in the identification of the deceased but also the corroboration of this dental evidence with other identification methods including fingerprints, DNA and physical evidence. There have been and will continue to be many lessons learnt in the reconciliation of the deceased in mass disasters such as this one. With a disaster of this magnitude it has certainly extended our knowledge of the best way to approach and cope with other disasters in the future. It can only be hoped that international efforts are made to encourage the keeping of good dental records and the marking of dentures which is a view that has been expressed from other disasters that have occurred in recent times.7

Progress to date

Forensic odontology is well recognized as regularly making a significant contribution to positive identifications in mass fatality incidents. The value and accuracy of dental evidence is acknowledged in the Interpol Disaster Victim Identification Guide⁸ where it is noted that if dentistry can provide a confirming identification, this can be regarded as a stand alone identification, not requiring additional contributing evidence from other scientific disciplines. Numerous authors⁹⁻¹² have reported the contribution of forensic odontology to the identification process in mass disasters, with contributions ranging from 22 - 100% of identifications in a number of disasters.

Recent advances in DNA technology and capabilities have led many to speculate that traditional methods of identification will be superseded, and ultimately rendered redundant. Sole identification via DNA has been employed in a number of recent disasters, including the Kaprun Cable car fire disaster. ¹³⁻¹⁵ In actuality, the majority of major incidents use a combination of all available identification techniques to confirm the identity of the deceased. ^{10, 12, 16, 17}

By 11 May 2005, 1,474 bodies had been identified through the formal processes of the Identification Board. The vast majority of these were identified by dental comparison. Table 1 shows the distribution of identifications by primary identifier. This indicates that odontology had provided 1,163 (79%) of these identifications, and contributed in part to another 125 (8%). Overall, odontology has played a role in 87% of identifications

Also observable is the low level of identifications confirmed by the other major identifiers, fingerprints and DNA. Fingerprints had contributed to 129 (9%) of identifications as sole identifier, and made a contribution to an additional 109 (7.3%) identifications. To this date, DNA had confirmed only seven (0.5%) of identifications. It is reasonable to assume that these disciplines will contribute to more identifications as the process continues. Reviews of identifications at future dates should indicate a more even distribution of the contribution of the different primary identifiers.

The significant contribution of odontology, particularly early in the identification process is consistent with findings in other disasters.¹⁷ The merit of forensic odontology as a valuable tool in the identification process in mass disasters is reinforced by the statistics of confirmed identifications completed by the Thai Tsunami Victim Identification Commission. There is no evidence to support the utilisation of

single methods of identification where large numbers of victims, from various countries, are involved.

PHASE 5: DEBRIEF

The debrief phase of the DVI process involves examination of work practices to establish the efficiency and effectiveness of the DVI response and to identify any positive or negative aspects that enhance or impede the response. In addition to the official Thai Tsunami Victim Identification debrief, there must be discussion of the role of odontologists in this disaster at upcoming meetings such as IAFS and AAFS.

Obvious areas for discussion include:

- The desirability, from the outset, to co-operate with local community leaders to accommodate local religious and cultural issues that may not be immediately apparent to overseas visitors, such as display of national flags without the corresponding host flag.
- 2. Standard Operating Procedures for international incidents. It is clear that standards of postmortem examination, and quality assurance checks, have been irregular, in spite of standard operating procedures. A number of national identification teams included dentists with minimal experience in both the theory and practice of identification work. Language difficulties have also contributed to problems. These issues need to be addressed at national levels; a major disaster is not the place to learn the theory of DVI.
- 3. Use of English for all data entry, as recommended by Interpol. There were numerous instances of

- antemortem and postmortem F1 and F2 forms not completed in English. Written descriptors (form F2 sections 87 and 88), potentially extremely useful sources of information, were often left blank. In future the need for some details in these sections could be emphasised.
- 4. Consistent rostering of odontologists from different countries to allow a steady daily work load. On some days there were a lot of dentists available and on other days only a few dentists were present.
- 5. Recognition of the requirements of original antemortem data. Each country of origin should appoint one or two trained forensic dentists to collate all antemortem records and to transcribe these to an acceptable standard prior to forwarding them to another country. There were instances of reluctance or refusal by treating dentists to supply original records. Such instances may be considered reportable to the Dental Board of the particular country.
- 6. Data file management. Numerous files mysteriously disappeared/reappeared.
- 7. The use and effectiveness of the PlassData™ computer program.

The Canadian team experienced a remarkable situation during the response, which may be regarded as an example of "disaster tourism". A retired dentist from Vancouver who lives near Phuket was able to insert himself into the response. He dropped the names of Canadian odontologists to gain access through the fairly loose security checkpoints. Since this dentist had no previous DVI training, problems that reflected poorly on the rest of the team ensued. The dentist's personality caused considerable stress

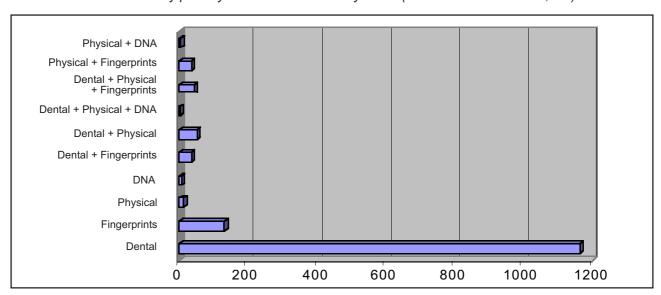


Table 1: Identified bodies by primary evidence as at 11 May 2005. (Total bodies identified 1,474).

and embarrassment to the team. The dentist developed a relationship with family members of a missing Canadian that came to the site and this caused numerous concerns and problems. Eventually Interpol personnel removed him from the site. This highlights the stringent need for team security and the use of fully-qualified odontologists.

Prior to the tsunami disaster, forensic odontology in Thailand had played a relatively minor role in the forensic sciences and was not considered to be of importance, comparing with other dental clinical subjects. The subject is allotted only two to three hours in a six-year undergraduate dental curriculum and does not appear in any post-graduate dental program. National standards or guidelines for forensic odontology had never been established. This disaster has increased awareness and highlighted the importance of forensic odontology in the Thai dental profession. They are determined to use this crisis as a chance to develop knowledge, experience and skill in forensic odontology and raise standards to an international level by development of a national protocol on forensic odontology and promotion of postgraduate study for specialised dentists in this area.

The Boxing Day Tsunami is the largest single event ever requiring a modern DVI response and the early days of the operation were a vast learning curve for all concerned. The fact that so many lessons were available and for the most part learnt, will stand the forensic dental community in good stead for any future operations. Never before have so many nations from different parts of the globe come together in one single operation and the term "Global Citizenship" has taken on a new meaning.

As a final comment, we have introduced a new word to DVI experts. All those who have been involved in this incident will recognize this word. "Manky" will from now on be associated with dirty, smelly work conditions, and a reminder of a job that had to be done in Thailand.

ACKNOWLEDGEMENTS

The Thai dental forensic team and Thai Dental Council would like to thank dental colleagues from the many countries that have provided help when it was so badly needed and, in particular, Dr. Russell Lain, specialized forensic dentist from Australia.

Contributors to this article would like to thank Colonel Pornprasert Kanjanran, Joint Chief of Staff, Thai

Tsunami Victim Identification Operations for permission to reproduce the table included in the article, and Australian Federal Agent Julian Slater, Manager Forensic Operations, Forensic and Technical, Australian Federal Police for advice and background information.

Thanks to all who have provided photographs for publication.

REFERENCES

- The University of Washington Department of Earth and Space Sciences. http://www.ess.washington.edu/tsunami/index.htm
- Sources: Associated Press; Australian Department of Foreign Affairs and Trade. March 6, 2005.
- Department of Disaster Prevention and Mitigation, Ministry of Interior. May 7 ,2005 http:// hazard.disaster.go.th/overall.php?pack=report_10
- Australasian Disaster Victim Identification Standards Manual. Australasian DVI Committee 2004.
- Poisson P, Chapenoire S, Schuliar Y, Lamant M, Corvisier JM. Four major disasters in Aquitaine, France. Am J Forens Med Pathol 2003;24(2):160-3.
- Brannon RB. Problems in mass-disaster dental identification: A retrospective view. J Forensic Sci 1999;44:123-7.
- Clark DH. An analysis of the value of forensic odontology in ten mass disasters. Int Dent J 1994;44:241-50.
- 8. Disaster Victim Identification Guide. International Criminal Police Organisation. 1997.
- Haines DH. Dental identification in the Rijeka air disaster. Forens Sci 1972: 313-21.
- Lunetta P, Ranta H, Cattaneo C, Piccinini A, Niskanen R, Sajantila A, Penttila A. International collaboration in mass diasters involving foreign nationals within the EU. Int J Legal Med 2003;117:204-10.
- Soomer H, Ranta H, Pentilla A. Identification of victims from the M/S Estonia. Int J Legal Med 2001;114:259-62.
- Valenzuela A, Marques T, Exposito N, Martin-De Las Heras S, Garcia G. Comparative study of efficiency of dental methods for identification of burn victims in two bus accidents in Spain. Am J Forens Med Pathol 2002;23(4):390-3.
- 13. Hoff-Olsen P, Mevag B, Ormstad K. The rapid identification of railway disaster victims by DNA analysis. Int Congress Series 1239 2003:895-6.

- 14. Meyer HJ. The Kaprun cable car fire disaster aspects of forensic organisation following a mass fatality with 155 victims. For Sci Int 2003;138:1-7.
- Hsu CM, Huang NE, Tsai LC, Kao LG, Chao CH, Linacre A, Lee JC. et al. Identification of victims of the 1998 Taoyuan Airbus crash accident using DNA analysis. Int J Legal Med 1999;113:43-6.
- Krompecher T, Brandt-Casadevall C, Horisberger B, Perrier M, Zollinger U. The challenge of identification following the tragedy of the Solar Temple (Cheiry/ Salvan, Switzerland). For Sci Int 2000;110:215-26.

17. Ludes B, Tracqui A, Pfitzinger H, Kintz P, Levy F, Disteldorf M, Hutt JM, Kaess B, Haag R, Memheld B. Medico-legal investigations of the Airbus A320 crash upon Mount Ste-Odile, France. J For Sci 1994; 39(5):1147-52.

Address for correspondence:

Dr Helen James Forensic Odontology Unit The University of Adelaide, 5005 Adelaide, Australia

Tel: +61 8 8303 5431 Fax: +61 8 8303 4385

Email: helen.james@adelaide.edu.au

LETTER TO THE LIVING

Barham J.R. Ferguson 12 January 2005

Hello my friend from distant lands. I see you without my eyes and Still you look upon my face as Though I am watching you. I feel your touch without my senses And still you treat my body with Unbridled kindness. I hear you even though I am Without ears, and still you speak Softly to me as you do your work. I know I am not what I used to be, But please remember me as I was. You may mourn my passing but You must not be saddened by it. As my life began, so must it end. Know that your work for me, My family and my country will Never be forgotten. Know that your smile throughout Adversity lifts my spirits, as well as Those of your friends and others Around you. Always live your life As though it may end at anytime, For it is then that you will truly live. My eternal Love and Blessings.

The unknown dead.